Cell Counter Plate

N [Neubauer Improved]

177-112C

1/10mmdeep, 1/400 & 1/16sqmm

T [Thoma]

177-312C

1/10mmdeep, 1/400sqmm

How to use

- 1. Pipette 6µL sample from the sample inlet, slowly. **Pipette 12µL only for Fuchs Rosenthal type.
- *If injection into the inlet is difficult, pipetting several times may be necessary. Alternatively, gently shake after injection.

- 2. Set the plate on a microscope and keep it still for 2-3 minutes.
- 3. Count cells referring to a rule in "Cell Counting Method"
- 4. Calculate accoring to the method of each type.

B [Burker-Turk]

177-212C

1/10mmdeep, 1/400 & 1/25sqmm

F (Fuchs Rosenthal)

177-512C

Cell Counting Method

On the four-sided boundary, count only cells on the two adjacent sides.

To count large cells such as cultured cells

$A = a \times 10 \times Dilution Rate$

A: Count of cells in 1 µL of undiluted solution

a : Average number of cells in compartments W1, W2, W3, and W4 in the figure on page 1

(Around 100 cells in each compartment is appropriate.)

*In case of Fuchs Rosenthal, the following equation can be used due to the different thickness.

$A = a \times 5 \times Dilution Rate$

W1 compartment is shaped as below

A cuboid with length 1 mm, width 1 mm, and thickness 0.1 mm

The volume of the W1 compartment is, $1mm \times 1mm \times 0.1mm = 0.1mm^3 = 0.1\mu L$

When cell count average over W1 \sim W4 is **a**, the cell count per 0.1 μ L of the liquid used for counting is **a**.

Therefore, cell count **A** per 1µL of the original liquid is

$$A = \{a / (1mm \times 1mm \times 0.1mm)\} \times Dilution Rate$$

 $A = (a/0.1\mu L) \times Dilution Rate$

 $A = a \times 10 \times Dilution Rate$

To count small cells such as yeasts, blood cells, etc.

$R = r \times 50 \times Dilution Rate$

R: Count of cells in 1 µL of undiluted solution

r: Total number of cells in compartments ①, ②, ③, ④ and ⑤ in the figure on page 1

Volume of a cuboid with length 0.2 mm, width 0.2 mm, and thickness 0.1 mm

The volume of the ① compartment is

$$4 \times 10^{-3} \text{mm}^3 = 4 \times 10^{-3} \mu L$$

The sum of the volumes ① to ⑤ is

$$\rightarrow 5 \times 4 \times 10^{-3} \mu L = 2 \times 10^{-2} \mu L$$

When the total cell count of $\bigcirc \sim$ \bigcirc summed up is $\bf r$, the cell count in $2 \times 10^{-2} \mu L$ is $\bf r$.

Therefore, cell count ${\bf R}$ per $1\mu L$ of the original liquid is

$$R = \{ r/(5 \times 0.2 \text{mm} \times 0.2 \text{mm} \times 0.1 \text{mm}) \}$$

$$\times \text{ Dilution Rate}$$

$$R = \{r/(2 \times 10^{-2} \mu L)\} \times Dilution Rate$$

 $R = r \times 50 \times Dilution Rate$

Sales agency: WATSON CO., LTD. E-mail: tcr@watson.co.jp

Export Division: 2-2-7 Murotani Nishi-ku Kobe, 651-2241, JAPAN TEL 81-78-991-4489 FAX 81-78-991-4491

Head Office: 1F, 14-17 Daikanyama-cho, Shibuya-ku, Tokyo, 150-0034, JAPAN TEL 81-3-5615-3591 FAX 81-3-6427-0740

Manufacturer: (FUKAEKASEI Co., LTD.